Fabrication of Antimicrobial Peptide-Loaded PLGA/Chitosan Composite Microspheres for Long-Acting Bacterial Resistance.

نویسندگان

  • Yuanyuan Li
  • Rongwei Na
  • Xiumei Wang
  • Huiying Liu
  • Lingyun Zhao
  • Xiaodan Sun
  • Guowu Ma
  • Fuzhai Cui
چکیده

An antimicrobial decapeptide, KSL-W (KKVVFWVKFK-CONH₂), which could maintain stable antimicrobial activity in saliva, has therefore been widely used to inhibit biofilm formation on teeth and prevent the growth of oral microorganisms for related infectious diseases treatment. In order to control the release of KSL-W for long-term bacterial resistance, KSL-W-loaded PLGA/chitosan composite microspheres (KSL/PLGA/CS MSs) were prepared by electrospraying and combined crosslinking-emulsion methods. Different formulations of microspheres were characterized as to surface morphology, size distribution, encapsulation efficiency, in vitro drug release, and antimicrobial activity. Antibacterial experiment demonstrated the prolonged antimicrobial and inhibitory effects of KSL/PLGA/CS MSs on oral bacteria. Moreover, the cell proliferation assay proved that the released KSL-W antibacterial dosage had no cytotoxicity to the growth of osteoblast MC3T3-E1. Thus, our study suggested that the KSL-W-loaded PLGA/CS composite microspheres may have potentially therapeutic applications as an effective drug delivery system in the treatment of oral infectious diseases such as periodontitis and periodontitis, and also within bone graft substitutes for alveolar bone augmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres

Microspheres formulated from poly (D,L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method. The microspheres ...

متن کامل

Preparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres

Microspheres formulated from poly (D,L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method. The microspheres ...

متن کامل

Preparation and Characterization of PLGA Microspheres Loaded by Cyclosporine-Cyclodextrin Complex

        The purpose of this study was to prepare and characterize microspheres loaded by cyclosporine A(CyA)-cyclodextrin (CD) complex. To achieve this goal, PLGA microspheres loaded by CyA CD complex were prepared by multiple emulsificationsolvent evaporation methods.Morphology, size, encapsulation efficiency and drug release from these microspheres were evaluated. Microscopic evaluation of mi...

متن کامل

Loading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres

  Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days.   Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....

متن کامل

Development and in vitro characterization of poly(lactide-co-glycolide) microspheres loaded with an antibacterial natural drug for the treatment of long-term bacterial infections

Biodegradable polymers, especially poly(lactide-co-glycolide) (PLGA), have good biocompatibility and toxicological properties. In combination with active ingredients, a specialized drug delivery system can be generated. The aim of the present study was to develop a drug delivery system consisting of PLGA microspheres loaded with the natural active ingredient totarol, which has several antimicro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2017